域泛化(DG)方法旨在开发概括到测试分布与训练数据不同的设置的模型。在本文中,我们专注于多源零拍DG的挑战性问题,其中来自多个源域的标记训练数据可用,但无法从目标域中访问数据。虽然这个问题已成为研究的重要话题,但令人惊讶的是,将所有源数据汇集在一起​​和培训单个分类器的简单解决方案在标准基准中具有竞争力。更重要的是,即使在不同域中明确地优化不变性的复杂方法也不一定提供对ERM的非微不足道的增益。在本文中,我们首次研究了预先指定的域标签和泛化性能之间的重要链接。使用动机案例研究和分布稳健优化算法的新变种,我们首先演示了如何推断的自定义域组可以通过数据集的原始域标签来实现一致的改进。随后,我们介绍了一种用于多域泛化,Muldens的一般方法,它使用基于ERM的深度合并骨干,并通过元优化算法执行隐式域重标。使用对多个标准基准测试的经验研究,我们表明Muldens不需要定制增强策略或特定于数据集的培训过程,始终如一地优于ERM,通过显着的边距,即使在比较时也会产生最先进的泛化性能对于利用域标签的现有方法。
translated by 谷歌翻译
通过在图像传感器设计中加入可编程的兴趣区域(ROI)读数来提高嵌入式视觉系统的能量效率的巨大范围。在这项工作中,我们研究如何利用ROI可编程性,以便通过预期ROI将位于未来帧中的位置并在该区域之外切换像素来进行跟踪应用程序。我们将ROI预测的该过程和对应的传感器配置称为自适应限制。我们的自适应数据采样算法包括对象检测器和ROI预测器(卡尔曼滤波器),其结合地操作以优化视觉管道的能量效率,其结束任务是对象跟踪。为了进一步促进现实生活中的自适应算法的实施,我们选择候选算法并将其映射到FPGA上。利用Xilinx血管AI工具,我们设计并加速了基于YOLO对象探测器的自适应数据采样算法。为了进一步改进算法的部署后,我们在OTB100和LASOT数据集中评估了几个竞争的基线。我们发现将ECO跟踪器与Kalman滤波器耦合,在OTB100和Lasot Datasets上具有0.4568和0.3471的竞争性AUC分数。此外,该算法的功率效率与另一个基线优于相同的情况,并且在几个外部的情况下。基于ECO的算法在两个数据集上发生大约4W的功耗,而基于YOLO的方法需要大约6 W的功耗(根据我们的功耗模型)。在精度延迟权衡方面,基于ECO的算法在管理达到竞争跟踪精度的同时提供近实时性能(19.23 FPS)。
translated by 谷歌翻译